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Abstract. It has been shown earlier [3,6] that matter waves which are known to lie typically in the range
of a few angstrom, can also manifest in the macrodomain with a wave length of a few centimeters, for
electrons propagating along a magnetic field. This followed from the predictions of a probability amplitude
theory by the author [1,2] in the classical macrodomain of the dynamics of charged particles in a magnetic
field. It is shown in this paper that this case constitutes only a special case of a generic situation whereby
composite systems such as atoms and molecules in their highly excited internal states, can exhibit matter
wave manifestation in macro and mesodomains, in one-dimensional scattering. The wave length of these
waves is determined, not by the mass of the particle as in the case of the de Broglie wave, but by the
frequency ω, of the classical orbital motion of the internal state in the correspondence limit, and is given
by a nonquantal expression, λ = 2πv/ω, v being the velocity of the particle. For the electrons in a
magnetic field the frequency corresponds to the gyrofrequency, Ω and the nonquantal wave length is given
by λ = 2πv‖/Ω; v‖ being the velocity of electrons along the magnetic field.

PACS. 03.75.-b Matter waves – 03.65.Ta Foundations of quantum mechanics; measurement theory

1 Introduction

The de Broglie matter waves associated with quantum
particles have a wavelength typically a few angstroms
(λ = ~/mv) essentially because of the small value of ~.
The question may be asked however, whether matter can
exhibit its wave aspect in the macrodimensions as well, not
in the sense of macroscopic correlated quantum systems
such as superfluids or superconductors, but in the manner
and spirit of de Broglie waves associated with single parti-
cles. Following the development of the concept of macro-
scopic matter waves through the theory of reference [1],
reinforced by a more recent work by the author [2], we
have demonstrated experimentally the existence of such a
wave behavior for electrons propagating along a magnetic
field having a wavelength independent of ~ and typically
in the range of a few centimeters [3,4,6]. We wish to show
here that such a wave manifestation is not entirely pecu-
liar to this system but is a generic property of composite
bound systems in their highly excited internal states ap-
proaching the classical limit. The wavelength of these new
matter waves is related, not to the masses of these parti-
cles as in the case of de Broglie waves, but to the frequency
associated with their internal state of excitation. This is
an entirely new wave manifestation of matter not hitherto
pointed out. We also predict the existence of such macro-
scopic or mesoscopic waves with atoms and molecules.
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There is, however, a qualification: as we shall see, this
macro-mesoscopic wave behaviour manifests only in one-
dimensional interference. The charged particle dynamics
along a magnetic field where such a behaviour has been
observed [3,4,6] is inherently one-dimensional (along the
magnetic field).

Even though the concept of the macroscopic matter
waves in relation to the charged particle dynamics along a
magnetic field actually followed from the theories of ref-
erences [1,2], we present here first a direct quantum me-
chanical derivation of the macroscopic form of the wave
function which is consistent with the form obtained from
references [1,2] and which can account for the rather
astonishing observations reported [3,4] in this connec-
tion, that were predicted by the theory. We later extend
these considerations to other systems such as atoms and
molecules, and in fact any composite system.

2 Macroscopic wave function and matter
waves for charged particles in magnetic field

A charged particle in a magnetic field in the classical me-
chanical domain corresponds in quantum mechanics to a
particle in a Landau level with a very large quantum num-
ber. If Eν be the energy of a Landau level so that

Eν =
(
ν +

1
2

)
~Ω, (1)
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where Ω = (eB/mc) is the gyrofrequency in the magnetic
field B, then ν � 1 corresponds to the classical limit
and ν~ = µ defines the gyroaction, which classically has
the form µ = mv2

⊥/2Ω, (v⊥ is the component of velocity
perpendicular to the magnetic field).

Consider now the propagation of an electron beam of
a given energy injected into the magnetic field with a
small pitch angle δ, so that v⊥ = v sin δ, and v‖ = v cos δ,
v‖ being the velocity parallel to the magnetic field. The
electrons in this beam are then in a group of Landau
levels sharply peaked around the quantum number ν =
E⊥/~Ω = mv⊥2/2~Ω. For a typical laboratory situation,
if we choose E = 1 keV, and a magnetic field B = 100 G,
then ν ' 108, which is clearly � 1.

A charged particle in a magnetic field can be described
by the Hamiltonian

H =
P‖

2

2m
+
P⊥

2

2m
+

1
2
mΩ2ξ2, (2)

where ξ represents the coordinate perpendicular to the
magnetic field and the potential energy term mΩ2ξ2/2
represents the harmonic oscillator corresponding to the
Landau gyro-oscillations, while the first term represents
the free motion along the magnetic field. As we shall see
later, a similar Hamiltonian also describes the oscillatory
motion of a diatomic molecule.

Let χν represent the Landau eigenfunctions which are
essentially the harmonic oscillator wave functions [5]. Let
there be a scatterer in the path of the electron beam, a
small obstacle like the wires in a grid through which the
electron beam may be made to pass. The scattering which
is assumed to be elastic may kick the electrons from the
Landau level ν to ν ± l, where ν � l > 1. If H̃ be the
perturbation Hamiltonian which describes the scattering,
then the transition amplitude for the process is given by

β(l)
ν ≡

〈
ν − l

∣∣∣H̃∣∣∣ ν〉 =
∫

dξχν−l(ξ)H̃χν(ξ), (3)

where ξ is the coordinate normal to the magnetic field
representing the coordinate of the Landau gyro-oscillator.

Let φν represent the complete wave function of the
particle in a magnetic field including a plane wave corre-
sponding to its free motion along the magnetic field, so
that

φν = χν(ξ)eiκνx, (4)
where

κν =
1
~

[2m(E − ν~Ω)]
1
2 (5)

and x is the coordinate along the magnetic field, while
E is the total energy of the particle. The transition ampli-
tude including the eigenfunction along the magnetic field
is given by

α(l)
ν =

∫
dξφ∗ν−lH̃φν = β(l)

ν exp [i (κν − κν−l) x]. (6)

Now making use of the assumption l � ν, we expand κν−l
around κν using the expression (5) which gives

κν − κν−l ' l
∂κν
∂ν

=
lΩ

v
, (7)

where v is the velocity of the particle along the magnetic
field

v =
[

2
m

(E − ν~Ω)
]1/2

. (8)

The difference (κν − κν−l) = lΩ/v represents the change
in the wave number κν of the plane wave, in consequence
of the change in the Landau level quantum number from
ν to ν − l due to the elastic scattering off the obstacle.
The transition amplitude is thus given by

α(l)
ν = β(l)

ν exp [i(lΩ/v)x] . (9)

This transition amplitude is again a wave function, repre-
senting a plane wave by virtue of the exponential factor.
But as we notice, it is clearly independent of ~. Since it is
derived directly from the quantum mechanical wave func-
tion (4), it represents a matter wave with a wave length
λl = 2πv/lΩ. For an electron energy parallel to the mag-
netic field E‖ = 500 eV and a magnetic field B = 100 G,
we find λ1 ' 5 cm, for l = 1. Thus this matter wave
length falls in the macrodomain in contrast to the usual
de Broglie wave length which is generally in the Å range.

It may be mentioned that these ideas have been
more formally expressed in a recent paper by the au-
thor [2] where he has derived a set of one-dimensional
Schrödinger-like equations starting from the quantum me-
chanic Schrödinger equation (in its path integral represen-
tation) for the charged particle dynamics in a magnetic
field. These are

iµ
l

∂Ψ(l)
∂t

= −
(
µ

l

)2
∂2Ψ(l)
∂x2

+
(
µΩ
)
Ψ(l), l = 1, 2, . . .

(10)
where x is the coordinate along the magnetic field, and
where µ, which is the gyroaction and has been shown in
typical laboratory conditions to be ∼ 108~, is a classical
object and appears in the role of ~ in these equations. In
terms of the notation of the foregoing treatment µ = ν~
with ν � 1. Furthermore, the wave functions Ψ(l) of these
equations are actually the transition amplitudes as de-
fined above, from the quantum mechanical state with a
large Landau quantum number ν to the one with quan-
tum number ν − l, induced by a perturbation. The num-
ber l labels this wave function as Ψ(l).

It is worth remarking that by virtue of the large quan-
tum number ν (∼ 108) of the basic state involved and
the small quantum number interval l across which tran-
sitions are envisaged, these equations for the amplitude
functions Ψ(l) describe the dynamics of the system in
the correspondence limit. This is the classical limit in ac-
cordance with correspondence principle of Bohr. Thus by
virtue of the large (classical) value of µ which appears in
the place of ~, these equations for the amplitude functions
Ψ(l) describe one-dimensional (along the magnetic field)
matter wave phenomena in the macrodomain of classical
mechanics. This is essentially equivalent to what has been
demonstrated above in equation (9), in more direct man-
ner.

The wave function of equation (9), as also the
Schrödinger-like equations (10) predict the matter wave
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phenomena with the wave length of a few centimeters
for the charged particles moving along a magnetic field.
The one-dimensional matter wave interference phenomena
which correspond to these macroscopic wave functions of
the form (9) have indeed been observed by the author and
his coworkers [3,4,6].

The experimental results reported in references [3,4]
exhibit the existence of discrete energy bands (the max-
ima and minima) in the transmission of electrons along
a magnetic field, when the electron energy from an elec-
tron source is swept as they transit from the latter along
a magnetic field to a detector plate a distance Lp away.
These bands which are rather unexpected in the param-
eter domain of the experiments where classical mechan-
ical equations of motion are supposed to operate, have
been identified as the interference maxima and minima in
the energy domain, with a (nonquantal) macroscopic wave
length λ = 2πv‖/Ω, in accordance with the form (9) of
the macroscopic wave function. The interpeak separation
of the transmission bands (in energy) are found to be in-
versely proportional to the distance Lp, so that the latter
corresponds to a frequency as the energy is swept. The ex-
periments of references [3,4] thus confirm the predictions
of the theory on the existence of the macroscopic form
of the matter waves (see however, comments appended to
Ref. [3] of the list of references).

We have also found the existence of beat phenom-
ena [6] in these experiments – a modulating beat struc-
ture of the already reported discrete energy band struc-
ture when the two “frequencies” in the system are close
together. In the presence of a grounded grid at a dis-
tance Lg from the electron gun, one has two frequencies
in the system corresponding to the Lp and Lg and the
frequency of the observed beats in the transmitted signal
is found to correspond to the difference (Lp − Lg), where
(Lp − Lg) � Lp. This is just what occurs in other wave
phenomena as well. These observed beats thus constitute
a further, even tighter evidence for the wave behaviour of
particles moving along a magnetic field.

3 Macroscopic matter waves for composite
systems in their high internal state
of excitation

Having discussed the concept of macroscopic matter waves
for charged particles in a magnetic field in the last sec-
tion, whose wave manifestations in the macrodomain have
also been observed, we now extend these considerations to
other composite systems such as atoms and molecules in
their internal state of excitation. We first discuss some
gedanken experiments to point out the possible macro-
scopic wave manifestations of these systems and then dis-
cuss the possibility of carrying out real experiments to ob-
serve these manifestations associated with such composite
systems.

3.1 Diatomic molecule in a highly excited vibrational
state

First we consider a diatomic molecule in a highly excited
vibrational state ignoring for the moment its rotational
and electronic degrees of freedom. Such a system is de-
scribed by a Hamiltonian similar to the one given by (2)
where the one-dimensional “parallel” momentum p‖ is re-
placed by the three-dimensional momentum P of the cen-
tre of mass M of the diatomic molecule and the “perpen-
dicular” momentum p⊥ is replaced by the momentum p
of the reduces mass m, identifying ξ as the reduced mass
coordinate. We then have the Hamiltonian as

Hv
DA =

P 2

2M
+

p2

2m
+

1
2
mω2ξ2 (11)

where we have now the vibrational frequency ω of the
diatomic molecule, and we have of course ignored the an-
harmonic terms for simplicity. We shall comment later on
the effects of the anharmonic terms.

If we employ a similar notation as before then the
eigenfunction for the system with the Hamiltonian Hv

DA
corresponding to the free motion of the centre of mass
with momentum P, and vibrational state ν is given by

ψ(P, ν) = A1eiP·X/~χν(ξ), (12)

with the total energy E

E =
P 2

2M
+ ~ω

(
ν +

1
2

)
, (13)

where χν(ξ) are the normalized harmonic oscillator wave
functions.

Consider now a beam of such particles with a given mo-
mentum P and in a highly excited vibrational state ν � 1,
which can be prepared using appropriate laser techniques.
Let the beam be scattered by a grid of scatterers G1 at
the point X1 in its path, with small transverse dimensions.
Assume that the scattering is elastic with respect to the
total energy E of the particle, and the scattering changes
only its internal vibrational state to ν′, so that we have
from the energy conservation

E =
P 2

2M
+ ν~ω =

P ′2

2M
+ ν′~ω (14)

where P′ is the centre of mass momentum after the scat-
tering. Thus the final state after the scattering is

Ψ ′ = A′1eiP′·(X−X1)/~χν′(ξ) (15)

where |ν′ − ν| � ν. If then H̃(ξ) is the perturbing
Hamiltonian which causes the scattering, then the transi-
tion amplitude at the point X is given by

αν′ν = 〈ν′|H̃|ν〉 = A1A
′
1 exp [−i (P′ −P) · (X−X1)/~]

×
∫

dξχν′(ξ)H̃(ξ)χν(ξ) (16)
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where A1 and A′1 are appropriate normalization constants.
We consider a one-dimensional situation, whereby we

choose the scattered momentum P′ to be in the same di-
rection as the initial momentum P and to take the X-axis
to be in the same direction as well. Then

(P′ −P) · (X−X1) = (P ′ − P )(X −X1). (17)

Using the energy conservation (14), we have (P ′ − P ) =
2M~ω(ν − ν′)/(P ′ + P ). If we write ν − ν′ = l, where
l � ν, then the change in the internal energy ∆Ei =
l~ω � P 2/2M . One may then approximate P +P ′ ' 2P ,
so that (P ′−P ) ' l~ω/v, where v = P/M is the velocity of
the centre of mass which is identified as the beam velocity
assumed to be sharply peaked at v. Using this in (16)
yields the transition amplitude as

α
(1)
ν′ν(X) = A1A

′
1βν′ν exp

[
i
lω

v
(X −X1)

]
, (18)

where βν′ν is the matrix element of the perturbation H̃(ξ)
between the oscillator states ν′ and ν. The form of the
perturbation H̃ is left general enough, and may be given
any specific form as required. The important thing to note
is that the transition amplitude for the translational centre
of mass degree of freedom has the form exp [i(lω/v)X ] and
is independent of ~. Note that in general the scattering at
the grid G1 could lead to different values of l = 1, 2, 3...

Consider next another grid G2 of scatterers located
at the point X2 in the path of the beam. The scattering
(transition) amplitude from this grid is given by

α
(2)
ν′ν(X) = A2A

′
2βν′ν exp

[
ilω
v

(X −X2)
]
, (19)

where A2 and A′2 are again appropriate normalization
constants.

Note that the expressions (18, 19) represent wave func-
tions corresponding to a wave number kl = (lω/v) = lk
which is the lth harmonic of the basic wave number
k = ω/v, the corresponding wave length being λ = 2πv/ω.
This is clearly independent of ~, and could lie in the macro
or meso-domain. For a typical diatomic molecule, the vi-
brational wave number is (ω/2πc) ≈ 2×103 cm−1. Taking
a modest value of beam velocity v ≈ 108 cm s−1, this gives
λ ≈ 0.1µ. This is about three orders of magnitude larger
than the typical de Broglie wave length of a few Å.

One can now look for interference between the waves
given by (18, 19) originating at the scatterer grids at X1

and X2. At a point X downstream of the grids at X1 and
X2 the total amplitude is given by

α = α
(1)
ν′ν + α

(2)
ν′ν

= eilkXβν′ν
[
A1A

′
1e−ilkX1 +A2A

′
2e−ilkX2

]
(20)

whence the intensity of the scattered particles is given by

|α|2 = |βν′ν |2
{

(A1A
′
1)2 + (A2A

′
2)2

+2 (A1A
′
1A2A

′
2) cos [lk (X1 −X2)]} · (21)

This therefore describes interference maxima and minima
through the cos [kl (X1 −X2)] term which is independent
of ~ and hence belongs to a nonquantal domain. Such in-
terference effects should be present in the experimental
arrangement described above. This is analogous to the
double slit interference, the grids at X1 and X2 corre-
sponding to the two slits, but now in one dimension. One
can check the validity of the expression (21), by working
with different diatomic molecules to vary ω, and different
beam velocities to check the dependence on v, as well as
different values of (X1 −X2).

Note that there would, in general, exist many values of
l = 1, 2, 3... in the excitation spectrum of the vibrational
states of the diatomic molecule as a result of scattering
off the grids G1 and G2. However, l = 1 would be the
most dominant one, being closest in energy to the central
quantum number ν. There would thus exist interference
maxima, for the fundamental l = 1. When the higher har-
monic terms corresponding to l = 2, 3, ... are included,
they would lead to a change of shape of the peaks cor-
responding to the fundamental as the expression (21) is
summed over l with appropriate weights. Higher harmon-
ics will lead to appropriate change of shape of the peaks
corresponding to the fundamental. Before we proceed to
discuss other cases, some comments on this case are in or-
der: first, we recall that we had idealized the treatment of
this case by ignoring the anharmonicity in the vibrational
motion of the molecule. This would be justified if the ini-
tial prepared state peaked around a vibrational quantum
number νo lies well within the harmonic regime. The latter
regime has the well-known feature that the energy differ-
ence between the neighbouring levels is independent of the
level quantum number. This circumstance enables one to
choose the initial state to be a low lying state, which has
the advantage of being far away from the region of an-
harmonicity. One may also add parenthetically that the
same property gives one the flexibility in this case of not
preparing a highly peaked state.

A comparison may be made, as was mentioned earlier,
between the diatomic molecule in its vibrational state and
the charged particle in a magnetic field which was dis-
cussed in Section 2. Both are bound systems. The latter
is bound harmonically normal to the magnetic field, while
it has a free motion along the field direction. There is
no anharmonicity in this case, and the free motion per-
tains to just one of its degrees of freedom along the mag-
netic field. In the case of the diatomic molecule, it is the
reduced mass of the system which is bound, while the
free motion pertains to its centre of mass. These differ-
ences notwithstanding, the nature of the one-dimensional
macro-mesoscopic interference phenomena is the same,
with the matter wave length given by similar expressions:
λch = 2πv‖/Ω, (Ω = eB/mc, the gyrofrequency, and v‖,
the velocity parallel to the magnetic field), for the particle
in a magnetic field and λDV = 2πv/ω, (ω, the frequency
of oscillation of the molecule, and v the velocity of its cen-
tre of mass), for the diatomic molecule with respect to its
vibrational state.
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3.2 Rotational and vibrational states of a diatomic
molecule

We next consider the case of the rotational states of the
diatomic molecule which belong to a Hamiltonian different
from (11). The energy of its rotational state with the angu-
lar momentum quantum number j is Ej = K~2j(j+ 1) '
K~2j2 for highly excited states. If we again assume the
scattering off the grids to be elastic with respect to the
total energy of the molecule, we have

P 2

2M
+K~2j2 =

P ′2

2M
+K~2j′

2
, (22)

whence

(P − P ′) =
2MK~2(j + j′)(j′ − j)

(P + P ′)
' 2K~jlj

v
, (23)

where we have assumed lj = (j′ − j) � j, whence (P +
P ′) ' 2P follows. We now use an expression similar to (16)
for the transition amplitude αj′j involving the transition
from the rotational state j to j′, and taking the scattering
to be one-dimensional as before,

αj′j = A1A
′
1γj′j exp [−i(P ′ − P )(X −X1)/~] , (24)

where γj′j is the matrix element of the perturbation
Hamiltonian H̃(ϑ) between the rotational states, Θj′m
and Θjm

γj′j =
∫

dϑdϕΘj′mH̃(ϑ)Θjm. (25)

We note that the rotational energy of the diatomic
molecule is degenerate with respect to the quantum num-
berm. If we now make use of (23) to substitute for (P−P ′)
in (24), we obtain for the transition amplitude αj′j

αj′j = A1A
′
1γj′j exp

[
ilj

2KJ
v

(X −X1)
]

= A1A
′
1γj′j exp

[
i
ljωj
v

(X −X1)
]
, (26)

where we have introduced J = j~ which in the limit
of large j is a classical object, the angular momentum
of the molecule. Also KJ = J(2mR2)−1, m being the
reduced mass, and R the internuclear distance. Then
2KJ = J/mR2 = ωj, where ωj is the angular velocity
corresponding to the quantum number j and the angu-
lar momentum J = ~j. The amplitude is again of the
form (18) and involves ωj and v which may be regarded
as classical objects, and is thus independent of ~ and cor-
responds to a wave length of meso or macrodimension.
However, the important difference between this case and
the vibrational case is that while ω in the latter case is
independent of the quantum state, ωj increases linearly
with the quantum number j. However, for large j it can be
regarded as almost a constant over a small range ∆j of j.

In general, however, the scattering by the grid of scat-
terers would induce transitions in vibrational as well as
in rotational states from the initially prepared state. By

following the arguments used earlier it can be shown that
one would then have a general wave amplitude of the form:

αj′j ; ν′ν = A1A
′
1Γj′j ν′ν

× exp
[

i
v

(
lνων + l′jωj

)
(X −X1)

]
, (27)

where now we mean by ων , the vibrational frequency and
by ωj, the rotational frequency, and v is again the velocity
of the centre of mass. We define the corresponding wave
numbers as kν = ων/v and kj = ωj/v. We thus have a
more general expression for the intensity of the superposed
waves scattered off the grids at X1 and X2, involving both
the vibrational and rotational transitions

|α|2 = |Γj′jν′ν |2
{

(A1A
′
2)2 +A2A

′
2)2

+ 2(A1A
′
1A2A

′
2) cos [(lνkν + ljkj)(X1 −X2)]

}
, (28)

where it may be remembered that the vibrational fre-
quency of a diatomic molecule ων � ωj , the rotational
frequency. Recall also that lν and lj represent level differ-
ences respectively of the vibrational and rotational states
across which transitions occur. Both lν and lj would have
a range of values, both positive and negative, which the
expression (28) will be summed over with different weight
factors corresponding to lν and lj . Since the latter repre-
sent harmonic numbers of the frequencies ων and ωj , the
two exponential factors with these frequencies (when the
cosine term is expressed in terms of the exponential fac-
tors) would yield a periodic function Fν of kν(X1 − X2)
multiplied by a periodic function Fj of kj(X1−X2), with
their shapes determined by the weights of lν and lj re-
spectively∑

lν ,lj

|αν′ν,j′j |2 ∼ Fν [kν(X1 −X2)]Fj [kj(X1 −X2)] .

(29)
Since kj � kν (as ων � ωj), the slower variation of the
function Fj with (X1−X2) or with v for a fixed (X1−X2)
will amplitude modulate the rapid variation of Fν with
(X1−X2), with the maxima of the modulation separated
on the X-scale by a distance Lj = 2π/kj, while the max-
ima of the rapid variation will be separated by the distance
Lν = 2π/kν . This is what one would expect to observe ex-
perimentally.

3.3 Rydberg states of an atom

One may also consider the Rydberg states of an atom for
a similar discussion, which presents a rather interesting
case. The energy levels for this case are given by

En = − me4

2~2n2
·

Using the expressions P = [2M (E −En)]1/2 and P ′ =
[2M (E −En′)]1/2, we find P − P ′ ≈ (2lEn/nv) where
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v = [2 (E −En) /M ]1/2 is again the magnitude of the cen-
tre of mass velocity with the total energy being E, and
where l = |n′ − n| � n is assumed. Using the forego-
ing expression for P ′ −P in the expression corresponding
to (18) gives

αn′n = A1A
′
1 ∆n′n exp

[
i
2lEn
nv~

(X −X1)
]
, (30)

where ∆n′n is the scattering (transition) amplitude for
a perturbation H̃ between the Rydberg states n′ and n.
Expression (30), of course, involves ~ unlike the expres-
sions (18, 19) for the vibrational degree of freedom, which
are independent of ~. However, ~ appears in the denom-
inator of the exponent in equation (30) in the combina-
tion n~. Thus when n is large enough, Jn = n~ may be
regarded as a classical object, namely the angular momen-
tum of the nth Rydberg state in the correspondence limit.
We therefore write

2En
v(n~)

=
2En
vJn

=
ωn
v
, (31)

where we introduce ωn = 2En/Jn, which can be shown to
be the frequency of the classical orbit (in the correspon-
dence limit). For large n this frequency may be consid-
ered as almost a constant for small variations of n. Equa-
tion (30) is then

αn′,n = A1A
′
1 exp [ikn(X −X1)] , (32)

where kn = ωn/v. We notice that kn ∼ n−3, and thus
decreases rapidly with n, and would correspond to meso-
scopic matter waves if n is sufficiently large. For n =
100, ωn ≈ 6.6 × 1010 rad s−1, and k‖ ≈ 660 cm−1 for
v = 108 cm s−1. This gives λn = 2π/kn ≈ 10−2 cm, which
is of macroscopic, or if one prefers, of mesoscopic dimen-
sions.

4 Suggested experimental arrangement

There are the following four main elements which consti-
tute the basic requirements of the experiment to check
the existence of mesoscopic matter waves proposed here.
One could choose either a diatomic molecule or a Rydberg
atom depending on the overall convenience. There would
of course arise a number of technical problems during the
course of carrying out the experiment which will need to
be addressed. We shall discuss here only broadly the var-
ious essential requirements and a possible experimental
arrangement.

1. First, it will be necessary to prepare the
molecules/atoms in an appropriate highly ex-
cited state. As has been already discussed, because
of the special features of the harmonic potential,
even low lying vibrational states can be selected
for state preparation for the diatomic molecule. For
the rotational states, on the other hand it would
be desirable to have a highly excited state, for only

in that case ωj which equals 2Kj~ would be nearly
constant for small variations of j when j is large.
Such states can be prepared with appropriate laser
techniques and some ingenuity. A Rydberg atom can
also be similarly prepared in a highly excited state so
that its frequency ωn = 2En/n~ is nearly constant for
small variations of n when n is large.

2. It will be necessary next to prepare a beam of such
molecules/atoms with a well defined velocity. A veloc-
ity of 108 cm s−1 corresponds roughly to an energy,
E ∼ 104 eV which should be possible without much
difficulty using an ion source.

3. Another requirement is the fabrication of grids for the
scattering of molecules/atoms as envisaged above. The
distance (X1 − X2) = D between the grids would be
required to be of the order of a few wave lengths ≤ 10
(of the particular matter wave). However, to obtain a
higher resolution it would be desirable to have an ar-
ray of 5–10 grids. While a larger number of grids would
yield higher resolution, it will also lead to a decreasing
transparency for the transmitted signal. So, the num-
ber of grids in the array will have to be optimized.
This will be similar to crystal lattice planes in electron
diffraction. Here the grid array will have to be prop-
erly fabricated. These will be required to be rigid and
rigidly fixed to the apparatus so as to ensure the elas-
tic nature of the scattering with respect to the total
energy of the molecules/atoms.

4. Finally one has to ensure the quasi-one-dimensionality
of the scattering process, which is the most crucial re-
quirement for the manifestation of the mesoscopic mat-
ter waves. One way to ensure is to use a beam of parti-
cles with a broad wave front parallel to the plane of the
grids. This is similar to the Bragg diffraction with the
electron beam normal to the plane of the crystal. How-
ever, a more definitive way to ensure it in the present
case is to use charged molecules/atoms in a given
charge state injected along an ambient magnetic field.
This will constrain the molecules to move along the
one-dimension of its direction. The field may be taken
to be at any angle θ to the plane of the grid array, and
defines the direction of the one-dimensional scattering.
This arrangement has the added advantage that the
intergrid spacing along the direction of the magnetic
field, which is the direction of the one-dimensional
scattering, can be varied by varying the angle θ. Thus
the effective intergrid distance Deff = D/ sin θ.

It ought to be mentioned, however, that since the
thickness of the grid wires would be roughly of micron
size or less (a few hundred nanometer diameter wires are
supposed to be available now) much larger than the di-
mension of the molecules, the forward scattering off the
grid wires envisaged above would have to be tangential.
An efficient scattering would then require that there be
larger number of wires of as small a thickness as possi-
ble. If χ be the grazing angle which the incident molecule
makes with the tangent plane to the grid wire, then it can
be easily shown that even if the grid wire of mass MG

were free, then the energy of recoil acquired by it in such
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a collision with the molecule of mass M , moving with the
velocity v would be ∼ (M2/MG)v2 sin2 χ, which is neg-
ligibly small in the ratio (M/MG). Thus the elasticity of
collisions with the the grid wires with respect to the to-
tal energy of the molecule is well satisfied. However, if the
grid wires are rigid and rigidly fixed to the apparatus then
elasticity is satisfied a fortiori.

5 Summary and discussion

The concept of macroscopic and mesoscopic matter waves
as distinct from the de Broglie matter waves that has
been presented above, first arose in relation to the dy-
namics of charged particles in a magnetic field as de-
scribed by a probability amplitude theory, applicable
in the macrodomain, and represented by a set of one-
dimensional Schrödinger-like equations obtained by the
author [1,2]. The role of ~ in these equations is en-
acted by a macroscopic action µ = ν~, (ν � 1) as a re-
sult of which they predicted the existence of macroscopic
matter wave interference phenomena. The wave length
of these waves is found to be given by λ = 2πv‖/Ω,
where v‖ is the velocity parallel to the magnetic field,
and Ω = eB/mc is the gyrofrequency. This expression
is, however, obtained in Section 2 by a direct quantum
mechanical derivation. For typical laboratory conditions:
electron energy ∼ 1 keV and magnetic field, B = 100 G,
λ ≈ 5 cm. Such macroscopic interference phenomena have
indeed been observed [3,4,6].

An examination of the derivation of Section 2 showed
that similar arguments could be applied to the highly ex-
cited vibrational-rotational state of a diatomic molecule
pertaining to the correspondence limit. The latter limit
ensures that in any small range ∆n of quantum numbers
in this limit (∆n � n), the levels are equidistant with
the interval being ~ω, where ω is the classical orbital fre-
quency ω = 2π(

∮
dq/vq)−1, in the region of large quantum

number n, where vq is the classical orbital velocity (see,
for example Ref. [5], p. 165). This is as if a system (any
system) behaves like a harmonic oscillator over a small
range ∆n� n in the correspondence limit. This result is
true for any system in the correspondence limit, including
the Rydberg atom, besides the diatomic molecule in its
vibrational-rotational state.

It has been demonstrated here that such composite
systems should exhibit mesoscopic matter wave interfer-
ence, in a one-dimensional scattering off an array of grids,
with a wave length given by λ = 2πv/ω, where ω is the
classical orbital frequency of the internal motion, and v,
the velocity of the centre of mass. In this form it is quite a
generic expression for the macroscopic matter wave length,
which is independent of the Planck quantum and involves
only the classical quantities ω and v, but not the mass of
the particle, and yet represents a matter wave.

Clearly this generic expression arises through the char-
acteristic property of the correspondence limit as given
above. The mesoscopic wave manifestation may thus be re-
garded as a persistence of the matter wave behaviour into
the classical domain, though admittedly it is restricted to

one-dimensional case only. This can be regarded as a clas-
sical counterpart of the quantum de Broglie wave. This
however is no violation of the correspondence principle as
we understand it. In fact the above discussion makes use
of it. On the other hand, if by correspondence principle
one were to mean that quantum mechanics should go over
into classical mechanics without exception in the limit of
large quantum numbers, then surely the results reported
here show that it is not entirely true.

It may, however, be mentioned that historically the
correspondence principle concerned itself with the prob-
lem relating to the frequency of radiation from an atom;
stating that in the region of large quantum numbers when
the levels become almost equally spaced, the quantum fre-
quencies approach the classical orbital frequency which is
identified as the frequency of radiation classically. Ques-
tions relating to the transition amplitudes between differ-
ent levels in the correspondence limit were perhaps not
posed (to the best of author’s knowledge). It is the prop-
erties of these transition amplitudes which have revealed
the macro-mesoscopic wave phenomena when energy ex-
change is taken into account between the internal states
and the centre of mass motion in one-dimensional scat-
tering. Equations (10) are, in fact (as already mentioned)
precisely the equations governing these transition ampli-
tudes for charged particles in a magnetic field. Such situ-
ations had not been considered before.

Finally, we suggest experiments that can be carried
out to check these predictions, and discuss in Section 4
some aspects relating to their basic requirements. This
discussion relating to the experiments is meant to be only
indicative and not at all exhaustive. Clearly there would
arise a number of technical problems during the course of
the experiment which will have to be suitably addressed.

The author would like to thank Prof. J.C. Parikh and Rajat
Varma for going through the manuscript and making sugges-
tions for improvement.

References

1. R.K. Varma, Phys. Rev. A 31, 3951 (1985). The set of
Schrödinger-like equations were obtained here from the
classical Liouville equation as its Hilbert space represen-
tation. There was no quantum mechanical input in this
derivation

2. R.K. Varma, Phys. Rev. E 64, 036608 (2001); Phys. Rev.
E 65, 019904(E) (2002). The same set of equations were
obtained in this reference starting from the Schrödinger
equation in its path integral representation, as alluded to
and elaborated in the text

3. R.K. Varma, A.M. Punithavelu, Mod. Phys. Lett. A 8, 167
(1993). The experimental results reported here have been
reproduced recently by: A. Ito, Z. Yoshida, Phy. Rev. E
63, 26502 (2001) who have attempted to give an alter-
nate explanation for these observations, in terms of clas-
sical trajectories. Their explanation is strongly dependent
on the size of the anode hole used in the experiment cou-
pled with the methodology employed in these experiments



218 The European Physical Journal D

which is such that the electron source whose energy was
swept as a part of the experimental procedure, was here
a secondary electron source. It has been discussed in de-
tail in reference [6] that their mechanism would not work
for the results on the discrete energy bands and beats re-
ported therein (Ref. [6] because of a different and simpler
methodology used). In fact the beat frequency observed
is entirely in accordance with the wave picture as already
mentioned in the text

4. R.K. Varma, A.M. Punithavelu, Mod. Phys. Lett. A 8,
3823 (1993)

5. L.D. Landau, E.M. Lifshitz, Quantum Mechanics
(Addison-Weseley Publishing Co. Reading, Mass. 1965),
p. 425

6. R.K. Varma, A.M. Punithavelu, S.B. Banerjee, Phys. Rev.
E 65, 026503 (2002)


